
42

Module 4: Concurrent and Parallel Programming

Stage 1

Semester 1

Module Title Concurrent and Parallel Programming

Module Number 4

Module Status Mandatory

Module ECTS Credits 10

Module NFQ level 9

Pre-Requisite Module Titles None

Co-Requisite Module Titles None

Capstone Module? No

List of Module Teaching Personnel

Mr Tony Mullins

Contact Hours Non-Contact Hours

Total

Effort

(hours)

72 128 200

L
e
c
tu

re

P
ra

c
tic

a
l

T
u

to
ria

l

S
e
m

in
a
r

A
s
s
ig

n
m

e
n

t

P
la

c
e
m

e
n

t

In
d

e
p

e
n

d
e
n

t

W
o

rk

36 36 64 64

Allocation of Marks (Within the Module)

 Continuous

Assessment

Project Practical Final

Examination

Total

Percentage

Contribution
50 50 100

Intended Module Learning Outcomes

On successful completion of this module the learner will be able to:

1. Design and implement concurrent and parallel algorithms
2. Use a parallel model to map algorithms to an underlying architecture , e.g.

C, C++, Ada tasks, Java threads, OpenMP, Posix thread, Scala
actors(agents), f# agents(actors);

3. Demonstrate a critical understanding of multi processor and multi core
architectures;

4. Solve problems requiring both semaphores and events as part of the
solution;

5. Analyse and document the difference between state based concurrent
systems and concurrent systems based on immutable state;

6. Design solutions to concurrent & parallel problems using actor based
message passing;

7. Implement different server architectures (topologies), e.g. client server,
peer-to-peer, agent systems, grid architectures;

8. Use parallelism to optimise performance of algorithms

43

Module Objectives

The future of microprocessor development is based around multiprocessor multicore
architectures that will deliver the performance required for future application
demands. The difficulty for software developers is to write programs that harness
the power of these new architectures. As a result the fundamental aim of this
module is to teach the learner how to write software for these machines.

The general module aims are to provide the learner with an understanding of the
need for, and advantages of, concurrent and parallel systems; to master a new
programming paradigm that is different from that of the single threaded one; a
description of how processes and threads are managed in multiprocessor, multi core
machines. The learner will achieve an understanding and mastery of the many
classical problems arising with concurrent and parallel tasks; an awareness of the
need for such issues as fairness, process synchronisation, deadlock avoidance, etc.;
the ability to write concurrent and parallel programs to solve real world problems; an
understanding of multi-core architectures and their significance for the
implementation of parallel systems; a mastery of notations to express solutions to
parallel problems.

Module Curriculum

• Fundamentals
Multi core, multiprocessor systems / Hardware Architectures / Motivation for
concurrency and parallelism / simple examples / advantages / disadvantages /
Process versus threads / priority of processes / process creation and
destruction (Fork in Unix, Task in Ada, thread in java) / processes sharing
memory / dynamic process creation / distributed memory / facilities for
concurrency and parallelism provided by programming languages and
operating systems; C, C++, Ada tasks, Java threads, OpenMP, MPI, Erlang,
Posix threads, Scala, F#, Windows, Linux and Unix.

• Resource Sharing

Mutual exclusion / semaphores / fairness / deadlock / starvation / monitors /
protected objects / condition variables / various kinds of shareable resources,
e.g. memory, files, printers, etc / degrees of sharing, e.g. grab whole file or
grab a single record / deadlock prevention. Classic problems: readers/writers,
producer/consumer, bounded buffer. / General problems requiring concurrent
and parallel solutions e.g. lift control, telephone exchange, etc. / Strategies for
allocating resources / fairness / resource allocation algorithms. / Necessity for
scheduling algorithms / thread priority / resource allocation problems.

• Parallelism

Task parallelism, data parallelism / Parallel algorithms from many areas,
including matrix algorithms, graph algorithms, solution to linear equations,
searching and sorting, image processing, encryption / Parallel models –
mapping parallel algorithms to underlying architecture using e.g. C, C++,
Ada tasks, Java threads, OpenMP, Erlang, Posix threads, Scala, F#.

44

• Function Programming and Concurrency

Message passing systems based on Actors (Scala, F# and Erlang) /
Avoiding race conditions with the use of immutable state / Communication
protocols for actors / Programming with Actors.

• Communicating Processes (processes without shared memory)

Distributed memory model; Pipes; channels; message passing; remote
procedure call; process identities; multi-casting – broadcast to multiple
processes.

• Server Architectures

Client server architecture, peer-to-peer architecture, grid computing.
Deploying services over these architectures. Developing an Agent based
architecture.

Reading Lists and other learning materials

Recommended Reading

Mullins, 2010, Concurrent and Parallel Programming, Griffith College Dublin

Doug, 2000, Concurrent Programming in Java, Sun

Goetz et al, 2006, Java Concurrency in Practice, Addison Wesley

Lester, 2006, The Art of Parallel Programming, 1st World Publishing

Herlihy, Shavit, 2007, The Art of Multi Processor Programming, Morgan Kaufmann

Quinn, 2004, Parallel Programming in C with MPI and OpenMP, McGraw Hill

Secondary Reading

Mullins, 2012, Programming Paradigms with Scala, Griffith College Dublin

Odersky, Spoon, Venners, 2010, Programming in Scala, Artima Press

Chandra, Mennon, et al, 2000, Parallel Programming in OpenMP, Morgan Kaufmann

Additional reading as recommended by lecturer, appropriate to topic and to each
learner’s area of research.

Module Learning Environment

Lectures are carried out in class rooms / lecture halls in the College. Lab tutorials
are carried out in computer labs. All labs have the software required to deliver the
programme.

45

Library

All learners have access to an extensive range of physical and electronic (remotely
accessible) library resources. The library monitors and updates its resources on an
on-going basis, in line with the College’s Library Acquisition Policy. Lecturers update
reading lists for this course on an annual basis as is the norm with all courses run by
Griffith College.

Module Teaching and Learning Strategy

The module is taught using a combination of lectures, demonstrations and tutorials.
The demonstrations and tutorials focus on getting learners up to standard in practical
application development. The lectures supply the necessary theoretical background
which informs the practice in tutorial. There is an emphasis on continuing practical
development with learners receiving focussed formative feedback throughout.

Module Assessment Strategy

This module is 50% continuous assessment and the other 50% is an examination.
The full breakdown of module assessment is described in the following table

Element
No.

Weighting Type Description Learning
Outcomes
Assessed

1 10% Assignment Programming problems that involve
use of threads and parallel processing

1,2

2 10% Assignment Programming problems that involve
race conditions and that require the
use of condition variables to solve

1,2

3 10% Assignment Programming problems that may be
solved using semaphores

1,2,4

4 15% Assignment Distributed processing and client
server architecture

1,2,7,8

5 5% Assignment Concurrent systems based on
immutable state and solution to
problems using actor based model of
concurrency

1,2,5,6

6 50% Examination Questions on the exam paper are
drawn from all aspects of the course.
The paper consists of 6 questions and
learners are required to answer any 5.
All questions carry equal marks.

2,3,4,5,6,8

